jueves, 21 de marzo de 2024

Nanomotor pulsante formado por origami de ADN

 

A diagram of a conveyor belt

Description automatically generated


El interés en fabricar nanomotores que realicen trabajo mecánico ha sido impulsado mediante  técnicas basadas en la biología molecular. Para la construcción a nivel nanométrico de triángulos, estrellas o formas más complejas, se aplica el origami de ADN que aprovecha la capacidad de auto-ensamblaje de este material para crear arquitecturas predeterminadas, utilizando hebras sencillas de ADN que se moldean con fragmentos complementarios conocidos como grapas.  

Investigadores de la Universidad de Bonn desarrollaron un nanomotor que consiste en dos brazos de 60 nm de longitud compuestos por hebras sencillas de ADN unidos mediante una bisagra. El extremo opuesto de cada brazo, está unido por un puente formado por una doble hebra de ADN. Una molécula de ARN polimerasa se encuentra anclada sobre uno de los extremos del puente de ADN. Cuando este sistema se alimenta con nucleósidos trifosfato (NTPs), la ARN polimerasa transita a lo largo de la cadena de ADN, acercando los brazos del nanomotor y sintetizando una molécula de ARN que se expulsa al medio. Un par donador-aceptor monitorea el cierre y la apertura de la bisagra mediante pulsos de fluorescencia. Este nanomotor pulsante se mantiene relajado a menos que sea alimentado con NTPs, generando la síntesis repetitiva de ARN al cerrarse la bisagra y emitiendo la consiguiente secuencia de pulsos fluorescentes.

La capacidad de este nanomotor para realizar trabajo mecánico a nivel nanométrico abre nuevas puertas en el diseño de nanomáquinas, con posibles aplicaciones en la creación de dispositivos a escala molecular y en la manipulación de materiales a nivel atómico.

Más información en:

Nature nanotechnology

jueves, 14 de marzo de 2024

Armazones tridimensionales en la nanoescala de óxidos metálicos y semiconductores por medio de arreglos programables y templetes de ADN

 https://www.science.org/cms/10.1126/sciadv.adl0604/asset/4bb840a3-76de-4f65-a44d-72e571053062/assets/images/large/sciadv.adl0604-f1.jpg


La habilitación de propiedades novedosas, mecánicas, ópticas, y electrónicas que presentan las nanoestructuras de materiales inorgánicos depende del control de su nanoarquitectura en 3D. En una amplia gama de aplicaciones recientes de metamateriales con propiedades mecánicas, para computación neuromórfica y generación de energía, se requieren armazones en 3D con materiales de composición compleja y arquitecturas en la nanoescala. Para este propósito además de los procesos de manufactura aditiva, los métodos litográficos de  múltiples pasos y diversos métodos para los depósitos, proveen control estructural y resolución entre 30 y 100nm.

Investigadores de E.U.A. aprovecharon los arreglos programables de ADN y los aplicaron al diseño de nanoestructuras ordenadas en 3D de materiales inorgánicos, por medio de infiltración de fase líquida y fase vapor en metales, óxidos metálicos, semiconductores y sus combinaciones. Obtuvieron nanoestructuras de zinc, aluminio, cobre molibdeno, tungsteno, indio, estaño, platino y compositos como el óxido de zinc dopado con aluminio, el óxido de estaño con indio y el óxido de zinc dopado con platino/aluminio. Las nanoestructuras-3D presentan características en la escala nanométrica ordenadas por la estructura del ADN y la red autoensamblada. 

Los estudios estructurales y espectroscópicos de los materiales seleccionados revelan la composición y estructura de las nanoestructuras inorgánicas así como de sus propiedades optoelectrónicas. 

Esta estrategia para la nanofabricación puede ser vital para una amplia gama de aplicaciones que requieran nanoestructuras en 3D con arquitecturas y composiciones complejas. El objetivo  de este trabajo es  establecer una metodología para hacer litografía-3D molecularmente programable en la nanoescala.

Mayor información en: SCIENCE ADVANCES