Para comprender las reacciones químicas que ocurren dentro de los nanoporos de materiales nanoporosos, ya sean sintéticos o naturales, como los presentes en membranas o canales iónicos de sistemas biológicos, es fundamental conocer la concentración de iones en su interior. Para ello, los nanoporos se funcionalizan con grupos químicos específicos.
En este estudio, un grupo de investigadores de Estados Unidos reporta el desarrollo de un nanosensor plasmónico del tipo núcleo-coraza, compuesto por una nanobarra de oro recubierta con sílica mesoporosa funcionalizada con grupos fenilo y metilo. Este nanosensor es capaz de medir la concentración local de protones, aniones (como fosfatos, nitratos, sulfatos y arsenatos), así como cationes (como mercurio, plomo y cobre) en nanoporos funcionalizados. Las mediciones se realizaron mediante espectroscopía Raman amplificada por superficie (Surface Enhanced Raman Spectroscopy, SERS), aplicada in situ.
Los valores obtenidos se comparan con los correspondientes a la sílica en volumen. Además, los resultados indican que estas concentraciones de iones son diferentes en nanoporos prístinos e hidrofóbicos en comparación con nanoporos funcionalizados con radicales fenilo y metilo. En éstos, reportan un aumento en la concentración de aniones y una disminución en la concentración de cationes de manera concurrente. Por otra parte, el pH en los nanoporos resulta dependiente de la composición de la solución. Encontraron que, en algunos casos, el pH en los nanoporos podía disminuir hasta en 2.5 unidades con respecto a su valor en el volumen.
Estos resultados proveen información acerca de la interacción química ión-nanoporo, es decir, y permiten controlar contaminantes de manera precisa y selectiva con aplicación directa en la química del agua para procesos de desalinización basados en membranas, para almacenamiento de CO2 y para la catálisis en materiales porosos.