jueves, 13 de junio de 2024

Discriminación y captura de bacteriófagos individuales mediante una nanopinza óptica


  

  

 El uso inapropiado de antibióticos y la falta de medicamentos que actúen a través de mecanismos novedosos han dificultado el manejo de infecciones. Esta problemática  constituye una amenaza para la salud humana y, a medida que las cepas bacterianas superan a los medicamentos en los que hemos confiado durante décadas, una posible solución podría encontrarse en los bacteriófagos: virus que atacan a las bacterias.

Este enfoque, denominado terapia con fagos, ha recibido mucha atención como alternativa viable a los antibióticos; sin embargo, los resultados de ensayos clínicos demuestran la necesidad de desarrollar terapias personalizadas que requieren de una selección rápida y eficiente de un fago específico contenido en una biblioteca que puede incluir más de 100 fagos distintos. 

Un grupo de científicos desarrolló una técnica conocida como “nanopinzas” ópticas mediante la cual se pueden atrapar y manipular bacterias y viriones individuales. Estas nanopinzas utilizan un rayo láser altamente enfocado para sostener y manipular objetos microscópicos  o submicroscópicos. El rayo láser crea un gradiente de fuerzas que atrae partículas hacia un punto focal de alta intensidad manteniéndolas en su lugar sin contacto físico. Las nanopinzas fueron integradas en un chip formado por un cristal fotónico de silicio en cuyas cavidades se producen fuertes interacciones electromagnéticas que interactúan con una entidad biológica específica. Lo anterior les permitió controlar y adquirir información sobre las bacterias y viriones capturados. 

La capacidad de manipular y estudiar viriones individuales en tiempo real  tienen implicaciones relevantes más allá de la terapia con fagos y abre nuevas oportunidades en la investigación microbiológica pues constituye una herramienta poderosa para pruebas y experimentación rápidas.

Para mayores detalles consultar: 

Small 


jueves, 23 de mayo de 2024

Rotación de Faraday gigante en semiconductores de espesor atómico

  


Es bien conocido desde hace varios siglos que, bajo ciertas condiciones, la luz se comporta como una onda que oscila en una dirección del espacio y se propaga en un plano definido llamado plano de polarización. Esta propiedad de propagación de la luz se utiliza en un componente central de las redes de comunicación óptica conocido como "aislador" o "diodo óptico". El componente permite que la luz se propague en una dirección pero bloquea toda la luz en otras direcciones.

Algunos materiales tienen la capacidad de rotar el plano de polarización de la luz. La llamada rotación de Faraday se produce al aplicar un campo magnético y se observa en la respuesta magneto-óptica de sólidos, líquidos y gases. Este efecto ha sido crucial para numerosos avances científicos y tecnológicos en astronomía, biología, química, física y en la ciencia de los materiales. En particular, se utiliza para determinar la estructura de los dominios magnéticos en los sólidos, en sensores ópticos, en el efecto Hall óptico, para aislantes o diodos ópticos, entre otras aplicaciones. 

En este trabajo, un grupo de investigadores de Alemania, Australia, India y Reino Unido, demostró que cuando una onda linealmente polarizada incide en monocapas de diselenuro de tungsteno (WSe2) y disulfuro de molibdeno (MoS2) encapsuladas entre capas de nitruro de boro hexagonal (hBN) bajo la acción de campos magnéticos moderados, el plano de polarización exhibe una rotación de Faraday gigante de varios grados. Este fenómeno físico ocurre en estos materiales debido a excitones que se componen por un electrón y un hueco muy fuertemente ligados por la fuerza de Coulomb. La magnitud de la rotación de Faraday se determina con la constante de Verdet. El efecto observado en este caso corresponde con una constante de Verdet de -1.9 × 107 grad/T·cm, el valor más grande que se ha medido para cualquier tipo de material iluminado con luz del espectro visible.

Estos resultados representan un avance crucial para el uso potencial de dispositivos ultradelgados de polarización óptica. En el futuro, los materiales bidimensionales podrían ser la base de los aislantes ópticos y facilitar su integración en circuitos integrados y en futuras tecnologías ópticas de computación cuántica y de la comunicación.

Para mayor detalle consultar: Nature Communications

















jueves, 9 de mayo de 2024

Transistores de efecto de campo de alto rendimiento con ferroeléctricos y canales ultradelgados para la electrónica flexible y transparente

 


El desarrollo de la electrónica flexible y transparente de alto rendimiento demanda transistores flexibles constituidos por capas ultradelgadas. El descubrimiento de materiales ferroeléctricos (FE) basados en hafnio (Hf) promovió el desarrollo de transistores de efecto de campo con ferroeléctricos (FeFET) de ultrabajo consumo de energía, alta velocidad de borrado y muy escalables, con alto potencial de aplicación en el campo de las memorias no-volátiles. La conducción en estos FeFETs se controla mediante la conmutación de polarización de la barrera ferroeléctrica en la compuerta, logrando así operaciones rápidas de lectura/escritura del dispositivo.

Sin embargo, el desarrollo de memorias ferroeléctricas que simultáneamente muestren una buena flexibilidad y un rendimiento significativo ha resultado ser un desafío, en particular, debido a las altas temperaturas necesarias para sintetizar los materiales FE.

Un equipo de investigadores de diferentes instituciones de China desarrolló un dispositivo FeFET de alto rendimiento con regímenes térmicos a temperaturas menores de 400 °C mediante la integración de capas HfO2 dopado con Zr (HZO) y óxido de indio-estaño ultradelgado (ITO) con espesores nanométricos. El FeFET propuesto tiene una ventana de memoria de 2.78 V, una alta relación de las corrientes de encendido y apagado (ION/IOFF) de más de 108 y una alta duración de hasta 2×107 ciclos. Además, los FeFETs sometidos a diferentes condiciones de flexión exhiben excelentes propiedades neuromórficas así como confiabilidad de flexión durante 5 × 105 ciclos de pulso con un radio de curvatura de 5 mm. 

La integración eficiente de materiales ferroeléctricos a base de Hf con prometedores materiales de canales ultradelgados como ITO, ofrece oportunidades únicas para posibilitar la fabricación de dispositivos FeFETs portátiles de alto rendimiento y compatibles con la tecnología actual de manufactura de circuitos integrados de semiconductores.

Nature Communications: https://doi.org/10.1038/s41467-024-46878-5

lunes, 29 de abril de 2024

Altermagnetos: un nuevo tipo de materiales magnéticos

 Diagrama

Descripción generada automáticamente

Los dispositivos espintrónicos, a diferencia de los electrónicos, no solo hacen uso de la carga del electrón para su funcionamiento, sino que también consideran una propiedad cuántica llamada espín. Gracias a esto, se pueden desarrollar dispositivos más rápidos, eficientes y con menor gasto energético que los dispositivos electrónicos convencionales.

Los materiales con propiedades magnéticas son los principales constituyentes de los dispositivos espintrónicos y suelen clasificarse en dos grandes grupos: ferromagnéticos (FM) y antiferromagnéticos (AFM). En un FM, todos los momentos magnéticos de los átomos se encuentran alineados en la misma dirección, dando como resultado una magnetización total. Por otro lado, los AFM están conformados por dos subredes de momentos magnéticos antiparalelos, resultando en una magnetización total de cero. Ambas subredes se encuentran relacionadas por una operación de traslación o inversión.

Recientemente, un grupo multidisciplinario y multinacional descubrió un nuevo tipo de ordenamiento magnético, empleando una teoría de clasificación de simetrías de momentos magnéticos: los altermagnetos (AM). Este tipo de materiales está constituido por dos subredes de espines antiparalelos; sin embargo, ambas subredes no se relacionan por una inversión o traslación, pero sí por una rotación. Este cambio en la simetría de la red le confiere a los AM características tanto de los FM como de los AFM, así como nuevas propiedades.

Mediante la técnica de espectroscopia de fotoemisión con resolución angular (ARPES) y modelado computacional basado en la teoría del funcional de la densidad (DFT), este grupo de investigación logró demostrar la existencia del altermagnetismo en el compuesto MnTe (telururo de manganeso), el cual fue sintetizado en forma de película delgada mediante la técnica MBE (por sus siglas del inglés molecular beam epitaxy) sobre sustratos de  fosfuro de indio con orientación (111) y terminación en In. Este descubrimiento tiene importantes aplicaciones en la nueva generación de tecnologías de memorias magnéticas y, sin duda, revolucionará los libros de magnetismo, pues ahora se debe considerar una tercera fase magnética que ha sido ignorada durante siglos. 

Más información en: Nature

jueves, 11 de abril de 2024

Aplicación de nanopolvos catalizadores obtenidos de residuos agrícolas para la electrólisis del agua

 


A comparison of powder and powder

Description automatically generated


El desarrollo de soluciones sostenibles para el aprovechamiento de la biomasa vegetal del sector agroindustrial requiere una atención especial debido a la gran cantidad de residuos que se acumulan. En todo el mundo se producen al año casi 150 millones de toneladas de cáscara de arroz y 5,5 millones de toneladas de cáscara de avena. Alrededor del 30% de la masa total de este tipo de residuos  se deposita en vertederos.  La eliminación inadecuada provoca la putrefacción de la biomasa y la liberación de gases de efecto invernadero, lo que se suma al efecto indeseable. Alrededor del 24% de las emisiones mundiales proceden del sector agrícola.

 Las nanoestructuras de carburo de silicio han llamado la atención por su excelente rendimiento y la posibilidad de utilizarlas en aplicaciones catalíticas, como electrocatalizadores para la producción de hidrógeno.  En este trabajo, investigadores de Rusia y China desarrollaron un método para convertir residuos agrícolas en nanopolvos de carburo de silicio. Las cáscaras de las plantas de cereales tienen un alto contenido en carbono y dióxido de silicio, que tras un tratamiento térmico proporcionan un material de partida casi ideal para su posterior síntesis mediante plasma de descarga de arco. Se eligieron como materias primas cáscaras de arroz y avena. Como resultado, se sintetizó carburo de silicio hexagonal α-SiC nanodisperso (tamaño de partícula <50 nm).

Demostraron que la adición de platino en una cantidad no superior al cinco por ciento en masa, en la reacción de liberación de hidrógeno durante la descomposición del agua, proporciona un rendimiento electrocatalítico comparable al de una muestra comercial de platino, y una gran estabilidad incluso después de 1500 ciclos de funcionamiento. El método desarrollado permite convertir residuos agrícolas en productos útiles de alta tecnología en forma de nanomateriales electrocatalíticamente activos. 

Más información en: Journal of Cleaner Production